2v^2-2v+12=(v+2)(v+2)

Simple and best practice solution for 2v^2-2v+12=(v+2)(v+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2v^2-2v+12=(v+2)(v+2) equation:



2v^2-2v+12=(v+2)(v+2)
We move all terms to the left:
2v^2-2v+12-((v+2)(v+2))=0
We multiply parentheses ..
2v^2-((+v^2+2v+2v+4))-2v+12=0
We calculate terms in parentheses: -((+v^2+2v+2v+4)), so:
(+v^2+2v+2v+4)
We get rid of parentheses
v^2+2v+2v+4
We add all the numbers together, and all the variables
v^2+4v+4
Back to the equation:
-(v^2+4v+4)
We add all the numbers together, and all the variables
2v^2-2v-(v^2+4v+4)+12=0
We get rid of parentheses
2v^2-v^2-2v-4v-4+12=0
We add all the numbers together, and all the variables
v^2-6v+8=0
a = 1; b = -6; c = +8;
Δ = b2-4ac
Δ = -62-4·1·8
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2}{2*1}=\frac{4}{2} =2 $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2}{2*1}=\frac{8}{2} =4 $

See similar equations:

| 400w+20=608 | | 400n+20=608 | | 90=100t-5t^2 | | 2t-20=t | | Y=5y-64 | | 2(x+4.00)=30.00 | | x+-11+x+10+31+2x+-42=720 | | 6(w=3)=72 | | 42=7(x+9) | | (-4)e-9=19 | | 4x(x+5)=10x+3 | | C+33=12c | | 15b=7b+48 | | 8(5x=2)=-4x+124 | | 3u+8=4u+3 | | 3t=5t-36 | | 15u=7u=32 | | 4(x+1)=5(x-2)+7 | | 6x^2+13x+30=180 | | v-1=3v-39 | | 4/5=x/11 | | 8u+46=u+48 | | 5(3x-10)-7x=4x+46+2x | | x+3=x4 | | 3x-24+5x=6(x-2) | | (2x)+(2x)=5x-7 | | 5x-12=8x-141 | | 4(3g+1)=1/2(12g+8) | | (6x)+(6x)=11x+7 | | 60-5x=12 | | v/1.7=5.1/7.2 | | h/4-3=6 |

Equations solver categories